140 research outputs found

    Topological comparison of methods for predicting transcriptional cooperativity in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cooperative interaction between transcription factors has a decisive role in the control of the fate of the eukaryotic cell. Computational approaches for characterizing cooperative transcription factors in yeast, however, are based on different rationales and provide a low overlap between their results. Because the wealth of information contained in protein interaction networks and regulatory networks has proven highly effective in elucidating functional relationships between proteins, we compared different sets of cooperative transcription factor pairs (predicted by four different computational methods) within the frame of those networks.</p> <p>Results</p> <p>Our results show that the overlap between the sets of cooperative transcription factors predicted by the different methods is low yet significant. Cooperative transcription factors predicted by all methods are closer and more clustered in the protein interaction network than expected by chance. On the other hand, members of a cooperative transcription factor pair neither seemed to regulate each other nor shared similar regulatory inputs, although they do regulate similar groups of target genes.</p> <p>Conclusion</p> <p>Despite the different definitions of transcriptional cooperativity and the different computational approaches used to characterize cooperativity between transcription factors, the analysis of their roles in the framework of the protein interaction network and the regulatory network indicates a common denominator for the predictions under study. The knowledge of the shared topological properties of cooperative transcription factor pairs in both networks can be useful not only for designing better prediction methods but also for better understanding the complexities of transcriptional control in eukaryotes.</p

    Influence of NH - Sγ {\text{NH - }}{{\text{S}}^\gamma } bonding interactions on the structure and dynamics of metallothioneins

    Get PDF
    Mammalian metallothioneins (M7IIMTs {\text{M}}_7^{\text{IIMTs}} ) show a clustered arrangement of the metal ions and a nonregular protein structure. The solution structures of Cd3-thiolate cluster containing β-domain of mouse β-MT-1 and rat β-MT-2 show high structural similarities, but widely differing structure dynamics. Molecular dynamics simulations revealed a substantially increased number of NH - Sγ {\text{NH - }}{{\text{S}}^\gamma } hydrogen bonds in β-MT-2, features likely responsible for the increased stability of the Cd3-thiolate cluster and the enfolding protein domain. Alterations in the NH - Sγ {\text{NH - }}{{\text{S}}^\gamma } hydrogen-bonding network may provide a rationale for the differences in dynamic properties encountered in the β-domains of MT-1, -2, and -3 isoforms, believed to be essential for their different biological functio

    Biana: a software framework for compiling biological interactions and analyzing networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties.</p> <p>Results</p> <p>We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from <url>http://sbi.imim.es/web/BIANA.php</url>.</p> <p>Conclusions</p> <p>BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.</p

    Frag’r’Us:Knowledge-based sampling of protein backbone conformations for de novo structure-based protein design

    Get PDF
    The remodeling of short fragment(s) of the protein backbone to accommodate new function(s), fine-tune binding specificities or change/create novel protein interactions is a common task in structure-based computational design. Alternative backbone conformations can be generated de novo or by redeploying existing fragments extracted from protein structures i.e. knowledge-based. We present Frag'r'Us, a web server designed to sample alternative protein backbone conformations in loop regions. The method relies on a database of super secondary structural motifs called smotifs. Thus, sampling of conformations reflects structurally feasible fragments compiled from existing protein structures. Availability and implementation Frag'r'Us has been implemented as web application and is available at http://www.bioinsilico.org/FRAGRUS

    Characterization of Protein Hubs by Inferring Interacting Motifs from Protein Interactions

    Get PDF
    The characterization of protein interactions is essential for understanding biological systems. While genome-scale methods are available for identifying interacting proteins, they do not pinpoint the interacting motifs (e.g., a domain, sequence segments, a binding site, or a set of residues). Here, we develop and apply a method for delineating the interacting motifs of hub proteins (i.e., highly connected proteins). The method relies on the observation that proteins with common interaction partners tend to interact with these partners through a common interacting motif. The sole input for the method are binary protein interactions; neither sequence nor structure information is needed. The approach is evaluated by comparing the inferred interacting motifs with domain families defined for 368 proteins in the Structural Classification of Proteins (SCOP). The positive predictive value of the method for detecting proteins with common SCOP families is 75% at sensitivity of 10%. Most of the inferred interacting motifs were significantly associated with sequence patterns, which could be responsible for the common interactions. We find that yeast hubs with multiple interacting motifs are more likely to be essential than hubs with one or two interacting motifs, thus rationalizing the previously observed correlation between essentiality and the number of interacting partners of a protein. We also find that yeast hubs with multiple interacting motifs evolve slower than the average protein, contrary to the hubs with one or two interacting motifs. The proposed method will help us discover unknown interacting motifs and provide biological insights about protein hubs and their roles in interaction networks

    VORFFIP-Driven Dock:V-D <sup>2</sup>OCK, a fast, accurate protein docking strategy

    Get PDF
    The experimental determination of the structure of protein complexes cannot keep pace with the generation of interactomic data, hence resulting in an ever-expanding gap. As the structural details of protein complexes are central to a full understanding of the function and dynamics of the cell machinery, alternative strategies are needed to circumvent the bottleneck in structure determination. Computational protein docking is a valid and valuable approach to model the structure of protein complexes. In this work, we describe a novel computational strategy to predict the structure of protein complexes based on data-driven docking: VORFFIP-driven dock (V-D²OCK). This new approach makes use of our newly described method to predict functional sites in protein structures, VORFFIP, to define the region to be sampled during docking and structural clustering to reduce the number of models to be examined by users. V-D²OCK has been benchmarked using a validated and diverse set of protein complexes and compared to a state-of-art docking method. The speed and accuracy compared to contemporary tools justifies the potential use of VD²OCK for high-throughput, genome-wide, protein docking. Finally, we have developed a web interface that allows users to browser and visualize V-D²OCK predictions from the convenience of their web-browsers

    Backup in gene regulatory networks explains differences between binding and knockout results

    Get PDF
    The complementarity of gene expression and protein–DNA interaction data led to several successful models of biological systems. However, recent studies in multiple species raise doubts about the relationship between these two datasets. These studies show that the overwhelming majority of genes bound by a particular transcription factor (TF) are not affected when that factor is knocked out. Here, we show that this surprising result can be partially explained by considering the broader cellular context in which TFs operate. Factors whose functions are not backed up by redundant paralogs show a fourfold increase in the agreement between their bound targets and the expression levels of those targets. In addition, we show that incorporating protein interaction networks provides physical explanations for knockout effects. New double knockout experiments support our conclusions. Our results highlight the robustness provided by redundant TFs and indicate that in the context of diverse cellular systems, binding is still largely functional
    corecore